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NOTATION

AaB Constants

c Chord length

C L Lift coefficient

CD Drag coefficient

d Spacing between the adjacent blades

i =IF--, 
k Camber coefficient
I Cavity length
Pi Pressure at far upstream
Pc Cavity pressure

s	 Chord length in the transformed plane
U	 Uniform free stream velocity
Uc	Constant cavity speed
u, v	 Perturbed velocity components in the x- and y-

direction respectively
w	 =(u - iv )/U, complex velocity function
x,y	 Cartesian coordinates of physical plane
y f	 Profile of the wetted lower blade surface

y c	Cavity shape

al	Angle of attack
062	 Flow angle with respect to x-direction at far downstream

'y	Stagger angle
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Coordinates in the transformed plane

9 4- i'1

Cavitation number

Rt,, lm	 Denote the .real and imaginary part of the

designated quantity
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INTRODUCTION

In the -,turfy of turbomachine ,.1 ana propellers, one often
approximate's the -actual conditions by considering a two-dimen-
oional flow pant an infinite lattice; of Indentical blades. The
problem of a fully wotto-d car, 4,cadu is well-known ) but doe"'I riot
ooem to be extenoivuly treated for cascades with cavitation.
Gonerally the occurrence of cavitation is promoted by high fluid
velocities and relatively low ambient pressures. Both of
conditions prevail in inducer pumps for missiles for example.
'111he purpose of this report i.n) to provide an approximate mothod
for calculating flow of incompressible fluid through a ca,,Icado
of cambered blades with finite cavities.

The difficulty in this case can be appreciated by consider-
ing the much simpler problem of incompressible flow past a single
supercavitating hydrofoil. The only exact analytical method
known, based on certain artificial models of cavity termination,
Is the., hodograph technique, which is rather complex. To solve
ouch complex problems ) one usually introduces suitable approxi-
niations, The most convenient of them is the linearized ) closed-
cavity theory of Tulin (1953). Realizing the complication in-
volved, a similar approximation is made in the present analysis.
The problem cf finding the cascade flow characteristics is then
reduced to one of quadratures.

It is almost needless to say that the method is Inherently
limited in its applications because it is based on the assumption
of small thickness of the blades being treated and relatively
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small disturbances being generated. However, in practice, the
pump: turbine or propeller blades are thin and consequently the
linearized results may be useful as a guide In the design of
turbomachines and propellers,

GENERA, FORMULATIONS

Cons ider t"o flow scnematically illustrated in Figure l
The cascade consists of an infinite array of identical cambered
blades having a stagger angle y and an angle of attach ai . The
mean chord length of each blade is c and the spacing of the
blades in the direction of the stagger angle is d. The flow is
turned by the cascade from its original horizontal direction
and velocity Ui at upstream infinity to the direction a2 and ve-
locity Ua at a location far downstream.

In the analysis to be developed, it is assumed that the
blade and cavity, with length t > c, are equivalent to a slender
body which causes only small disturbances in an otherwise uni-
foria stream. As a first approximation the boundary conditions
may be applied on the x -axis instead of on the slender body. If
the cavities are assumed to be detached from the sharp leading

and trailing edges of each blade, the linearized boundary condi-
tions on the wetted lower surface of each cavitating blade may
be expressed as:

dy
U = ^- al + ^ ^	 ^Q ^ x <  

c
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On the cavity the boundary condition is

Q	 C< x< 4 , y	
C.^. 

and c C x< t	 y	 0-
e

At upstream infinity

u	 1

U 	 c

in which

uv	 Perturbed velocity components in the x- and

y-axis respectively

U 	 --= Constant cavity speed = V T + a U,

y f = Profile of dower blade surface

a	 = Cavitation number 	 « 11 a constant
pUl ^

p	 - fluid density

In order to insure that the cavity is closed it is also re-
quired that

v_dx ^C

b ody c

The lineariz ed problem may now b e s tat ed  as follows: Given
a cascade defined by y, to , c/d, a, and y f it is required to
find the harmonic function w(x,y) = u/Uc - i v/Uc on an infinitely



H.-Y-DRONAUTICS, Incorporated

connected domain which satisfies the mlxmd boundary conditions

on the body, the conditions at upstream infinity and the clos-

ure condition,
The problem as formulated may be greatly simplified) (since

the flow Is periodic) with the aid of the conformal transforma-

tion

d	 I . CA,	
'Y	

1 - C
Z W x + ly	 e	 0	 + e

i 
^,n -------

which maps the multiple-connected region In the z-plane onto the

	

+ In) plane as shown in Figures 2 anl,, 	 The function has

1 (7/2 - CP )	 I (r/2 + CP )
branch points at	 r, e	 and	 r2 e	 (11 or-

responding respectively to up- and down-stream infinity in the

physical z-plane. The line between C, and Ca is a branch cut of

the mapping function. By crossing the cut ) the value of the

logarithmic function in Equation [13 changes by 27ri or -21ri.

Each Rlemann, sheet in the C-plane corresponds to the flow region

over a different blade-cavity body I—% the cascade. The leading

edge of the blade-cavity body is mapped to the origin of the
C-plane and the trailing edge to a point at infinity. The junc-
ture of the lower blade surface and cavity maps to C = -s,

The linearized cascade problem is now reduced to that of
finding a harmonic function w(C) in the C-plane which satisfies
the following boundary conditions:



.1

HXDRONAUTI CS , Inc orp orat ed

Oa the wetted surface

dy
-Im w = -a1 + dx (g) -s < t < 0

0

 Ti = 0

On the cavity

Rt w =0 -w<9< -s and 0 < 9 < w r= 0
	

C 21

At upstream infinity $ i.e., at

Im w-0, Rtw--2

and the closure condJ,tlon

U (x)dx = -2m	 w(z)dz = -Im	 w(C) dZ dC = 0
body c	

body	 b ody
C31

where Rt and Im denote the real and imaginary part :^f the desig-
nated quantity. This boundary-value problem resembles closely
that of the flaw past an isolated supercavitating hydrofoil and
is a special case of the Riemann-Hilbert problem for a half-plane.
(Muskhelishvili, 1953) .

Before giving the details of the general solution it is ex-
pedient ) first, to introduce the cascade parameters, given

originally by Cohen and Sutherland (1958), which characterize

the geometry of the cascade. These are:
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d= ;1 co s v .,n r2 + 2P s,in -Y

c^. c Q_ sue'', 	 `k' 2(s/r,) sin cp + (.sIrj )a

T	
l _ 2 (s /ra) sin cp + (s /ra )^

	

sin ry tan." 1 _ s /r' cos eA _ tan-1 s /ra Cos s^ n ---	
1 531 + ( s /r, sin ^	 l - (s /r2 	cp

where
3 R2Q/a VFaxs

(Q + cos ry) cos y cosh 8

	

Q +Cos	 a
ra = rl	

s inh 8

Q = (cosha e - sina ry)2

cp = tan- i s in ry

Q

8 = to ( b j , a and b are arbitrary constants

Equation [ 41 gives the length of the slender (blade-cavity) body
as functions of given parameters y, d and b/a. Equatton 151 de-
termines the value of chcrd length s in the transformed C-plane

for given values of y, d, b/a and solidity c/d.
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SOLUTI ON OF THE BOUNDARY-VALUE PROBLE14

The general solution of the reduced boundary-value problem

stated in the previous section, may be shown to be of the form

w(C)	 -	 H(C)	 iwtt - tdt	 + H(C ) P(C)	 E 6]

-00

where	 .

H(C) is the fundamental solution which depends on the

flow behavior at the edge points S = 0 and S = -s,

P(C) is a rational function which depends on the flow
behavior at the edge points and -1w.

The first term of Equation [ 6] is the particular solution
which satisfies the mixed boundary conditions on the real ^-axis

while the second term, is the general solution of the corresponding
homogeneous problem.

In accordance with the linearized formulation it is required

that w(s) satisfies the following conditions as in the case of
flow past a single foil (Tulin, 1964):

_1

w(S),.. 0 2	 atS - O

w(S) is finite .	at S = -s	 (smooth ,puncture condition) 171

W (C	 C	 at S = ^
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The functions H (C) and P (C) then tape the forms

H(C) = i -C+5
C 83

P (S ) = AC + B

where A and B are real constants. The general solution of the

boundary-value problem, in this case ) becomes
C

o	 dy
f

	+ s _ 1	 -a, + dx (t)	 °t dt + A + Bw (S)	
^^	

V	 t- S	 t + s	 S

-s

193

which should., in addition, satisfy

uniform flow condition at upstream infinity



HYDRONAUTICS, Incorporated

and the closure condition

w (c ) 
ddC

= -Tm

about
and Cs

W(C) 
dz dC = 0, or

Im 2vi ^ e' i	w (c,,) -^ w (Ca) = -d Rt, e
-i^'	 + w (C 2 )	 - 0

Equations [ 10], [ 111 and [ 121 give uniquely, the values of A, B
and c. For a prescribed oncoming flow direction, body shape,
cavity length and cascade geometry the flow field w(S) is, there-
fore, completely determined.

In the case of flat plate cascade, i.e., 	 dy f/dx = 0,	 the
complex velocity field is of the form

w (S)	 i	 S+ s a 1-	 + s + AC + Bs	 s

which, together with Equations [103, [ 113 and [121, may be shown
to yield a solution identical to that given by Cohen and

Sutherland (1958) .

The lift, experienced by the blade as a result of fluid flow,
is given to a first order of approximation, in non-dimensional
form, by
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L JPU 2 c	 C	 dC dC

C
	 body	 body

-- 2 Im e -I y cr + w (Ca)	 =	 2Q - Im w ( ^ )c d	 2	 d c s [133

Within the Framework of linearized theory the drag coeffi-

cient may be expressed as

c	 -s

CD	
Drag	 _	 Im	 [w(z) ]a dz	 - c im	 [w(c) 3:1( 	 d 

d^	 r.143

^pU
c

2 c
0	 0

Similarly the upper and lower cavity shapes can be approxi-
mated by the following equations

	

x dy	 x	 x(g 0)

y	 -	 c - -Im w(x, 0+ )dx = -1m w (S) '

	

0	 0	 0	 0151

ds
c	 dx	 S
upper

x dy	 x	 x(9)0)

yc	 dx- Im	 w (x, 0 - )dx -Im W(C) d d S

	

lower f
c	 c	 - s

The exit Flow velocity U2 /U G and angle oa are approximately

given by	 1
U2 =	 1 - 6 + Rt w (C 2 	 + -Im w (C. X  

2

U 	
2

1

(l -a) + (-Im w(Cs )tan	 2 + -Im w(S )	
2 

[161
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and

as _ sin	
WU	

-Im w(Ca
c

2 CLI2d1
0os 'Y C x.71

respectively,

SOME NUMERICAL RESULTS AND DISCUSSIONS

The method of calculating the flow field around a supercavi-.

tating cascade, as presented in the previous sections, is straight--

forward. The solution is In many respects similar to that given

for isolated supercavitating hydrofoils, The calculations gen-

erally involve only numerical integrations and simple algebraic

operations.

Computations were performed for blades with lower surface

lope of the following types

(I) dy f
dx = O
	 (flat-plate)

(II) dyf _ 16 k 1 ^ 2	 circular-arc camber	_Tx	 9T	 e	 (	 )

(III) dy f	^^-	 X

dx =	 k 1 + V -- 8 G	 (two-term camber)
5Tr'

t
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(IV) dyf = 2 k l - 6 x + 32 x - 32 3	 ( three-term camber)

	

TXx 3̂r	 c	 c	 c 

(V) dyf --
 

.4 	 I - 16	 x + 120 ^ - 368 3Tx	 57r	 c	 c	 c

+ 512 xe - 256 
T2CE

(five- term camber)
ca

The constant k in these equations is the camber coefficient

which, in isolated cases, represents the so-called design lift
coefficient (for details see Johnson, 1961). The effects of
blade profiles on lift coefficient are substantial. Some of the
typical calculations are shown in Figure 4. The results seem to
indicate that higher term cambered blades give higher lift coef-
ficients. It is to be noted however, that the forward portion
of higher term cambered blade is very than. The strength of

blade structure may therefore become an important factor in the
final design of the supercavitating cascade

One cf the primary interests in the cascade analysis is,
of course, the behavior of lift coefficient with different
cascade geometries. Figure 5 illustrates the lift coefficient

for supe~cavitating cascades of flat plate and circular arc
blades as functions of stagger angle and solidity. In general

the cascade geometry has marked influence on cascade performance.
The interference effect is larger for larger stagger angles and
solidities.

Is
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The effect of cavity length on cascade performances is also
of practical interest. Some of the theoretical calculations are
depicted in Figures 6 and 7 It is found in general, that the
lift coefficient and cavitation number decrease W ,th increasing
cavity length and approach rather rapidly to certain asymptotic
values. Also shown in Figures 6a and 7a are experimental data
of Wade and Acosta (1966) for supereavitating flat plate cas-
cades. The theoretical predictions are in reasonably good agree-
ment with experimental findings.

CONCLUDING REMARKS

In the present study a linearized theory of supercavitating
flow past a straight cascade with arbitrary blade shapes is de-
veloped. From the analysis, it is possible to determine the lift
and drag coefficients, cavitation number, cavity shape and exit
flow conditions for any given specific cascade geometry, blade
shape, cavity length and initial inflow conditions. The cavi-
tating performance of the cascade is, in general, found to de-
pend strongly on stagger angle, solidity, blade shape and cavity
length

It is needless to say that the present analysis is limited

to cases in which the disturbance, caused by the presence of the
blade, is small an inherent restriction in the linear approx-

imation. However, in practice the pump, turbine or propeller
blades are quite thin and the linearized results obtained serve
as a guide to the designer and aid in the interpretation of test
results obtained for supercavitating pumps and turbines.
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